导师队伍

李景教授
2019年09月02日 | 点击次数:

 

数学与统计学院研究生导师信息

一、电子照片

 

二、基本情况

姓名:李景

性别:

学历学位:博士研究生

职称:教授

职务:副院长

学术兼职:湖南省数学会理事、湖南省系统仿真学会理事

研究方向:偏微分方程

电子邮箱:lijingnew@126.com

三、专业教学及教学成果

主要承担《线性代数》、《概率论与数理统计》、《Sobolev空间》、《数理方程》等课程教学;

主要教学成果:

1.主持湖南省学位与研究生教学改革研究项目:“双主体”背景下数学与统计学研究生培养模式改革的研究,2021.8-2023.7,省级。

2.主持本科教研教改项目:国外教学理念在大学数学课程教学中的应用研究,2019.6-2021.5,校级。

3.主持校级研究生教育教学改革研究项目:“双一流”背景下提高数学学科研究生培养质量的改革实践与理论研究,2019.9-2020.12,校级。

4.指导大学生参加Mathematical Contest in Modelling美国数学建模竞赛获H奖,2021年。

5.指导大学生创新训练项目:新冠病毒传播分析及其对长沙市旅游业影响的数学模型研究,国家级,2020.6-2022.6。

6. 李景,王芳,大学数学课程教学的多元化教学模式改革,科教导刊,2020vol.18, P195P216.

7.李景,赵康,浅谈如何提高数学学科研究生科研贡献率,科教导刊,2020, vol.34, P212.

8.李景,如何提高数学学科研究生培养质量,文渊,2020P324.

9.李景,大学数学教学模式的改革与创新,科技信息,2012P100.

四、研究方向及研究团队

主要从事应用数学学科领域科研工作;

五、科研成果

 

1.主持国家自然科学基金数学天元项目,非线性发展方程的稳定性理论研究,12126408,20万元。

2.主持军工项目,****分数阶微积分方程理论,100万元,2022-2024。

3.主持湖南省教育厅重点项目,20A022,求解时间-空间分数阶Landau-Lifshitz-Bloch方程,2020/06-2023/06, 10万元,在研,主持。

4.主持湖南省自然科学基金面上项目,2021JJ30697,分数阶Landau-Lifshitz-Bloch方程的定性分析及数值2021.9-2023.12.,在研,主持。

5.主持湖南省自然科学基金青年项目,2018JJ3519,求解空间、时间分布阶对流扩散方程,2018/01-2020/08, 5万元,已结题,主持。

6.主持湖南省教育厅优秀青年项目,17B003,移动边界上空间、时间分数阶对流扩散方程的有限体积法,2017/09-2020/06, 7万元,已结题,主持。

7.主持国家自然科学基金青年项目,11301040,多项时间-空间分数阶对流扩散方程,2014/01-2016/12, 22万元,已结题,主持。

8.主持国家自然科学基金专项基金数学天元项目,11226166,分数阶扩散方程未知参数的求解,2013/01-2013/12, 3万元,已结题,主持。

[1]Li J.,Li K., The defoucusing energy-supercritical nonlinear Schrodinger equation in high dimensions, SIAM J. Math. Anal., 2022, vol. 54, 3253--3274.

[2] Li J., Yang Y., Jiang Y., Feng L., Guo B., High-order numerical method for solving a space distributed-order time-fractional diffusion equation, Acta Mathematica Scientia, 2021,vol. 41B: 801-826.

[3] Li J., Guo B., Zeng L., Pei Y.,Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions,Discrete & Continuous Dynamical Systems - B, 2020, vol. 25, 1345-1360.

[4] Li J., Sladek J., Sladek V., Wen P., Hybrid meshless displacement discontinuity method (MDDM) in fracture mechanics: Static and dynamic, European Journal of Mechanics/A Solids, 2020,vol. 83, 104023.

[5] Chen C., Shen S., Dou F., Li J., The LMAPS for solving fourth-order PDEs with polynomial basis functions, Mathematics and Computers in Simulation, 2020, vol.177, 500-515.

[6] Chang W., Chen C., Liu X., Li J., Localized meshless methods based on polynomial basis functions for solving axisymmetric equations, Mathematics and Computers in Simulation, 2020, vol.177, 500-515.

[7] Li X., Liu Z., Li J.,Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces, Acta Mathematica Scientia, Series B, 2019, vol. 39B, 229-242.

[8] Liu F., Feng L., Anh V., Li J.,Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains,Computers and Mathematics with Applications, 2019, vol. 78, 1637-1650.

[9] Li X., Li Y., Liu Z., Li J.,Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions, Fractional Calculus and Applied Analysis, 2018, vol. 21, 1439-1470.

[10] Li J., Liu F., Feng L., Turner I., A novel finite volume method for the Riesz space distributed order advection-diffusion equation, Applied Mathematical Modelling, vol.46, 2017: 536-553.

[11]  Li J, Liu J. Z., Korakianitis T., Wen P.H., Finite block method in fracture analysis with functionally graded materials, Engineering Analysis with Boundary Elements, vol.82,  2017: 57-67.

[12]  Li J, Liu F., Feng L., Turner I., A novel finite volume method for the Riesz space  distributed order diffusion equation, Computers and Mathematics with Applications, vol.74, 2017: 772-783.

[13]  Li J., Guo B. L., Divergent Solution to the Nonlinear Schr¨odinger Equation with the  Combined Power-Type Nonlinearities, Journal of Applied Analysis and Computation, vol.7, 2017: 249-263.

[14]  Li J, Huang T., Yue J.H., Shi C., Wen P.H., Anti-plane fundamental solutions of Functionally graded materials and applications to fracture mechanics, Journal of Strain Analysis for Engineering Design, vol.52, 2017: 1-12.

[15]  Li J., Shi C., Wen P.H., Numerical analysis for cracked functionally graded materials by Finite block method, Key Engineering Materials, vol.754, 2017.

[16]  Feng L., Zhuang P., Liu F., Turner I., Li J, High-order numerical methods for the Riesz space fractional advectionõdispersion equations, Computers and Mathematics with Applications, 2016, http://dx.doi.org/10.1016/j.camwa.2016.01.015

[17] Feng L., Zhuang P., Liu F., Turner I., Anh V., Li J., A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients,  Computers and Mathematics with Applications, vol. 73, 2017, 1155-1171.

[18] Li J., Guo B. L., Parameter identification in fractional differential equations, Acta Matematica Scientia, vol. 33, 2013: 855-864.

[19] Li J., Guo B. L., The quasi-reversibility method to solve heat equations with mixed Boundary values, Acta Mathematica Sinica, English Series, vol. 29, 1617-1628.

[20] Xu Y. J., Li J., Liu Z. H., Controllability for a parabolic equation with a nonlinear term involving the state and the gradient. Journal of Applied Mathematics and Computing, vol.   29, 2009: 197-206.

[21] Li J., Xu Y. J., An inverse coefficient problem with nonlinear parabolic equation, Journal  of Applied Mathematics and Computing, vol. 34, 2010: 195-206.

[22] Li J, Deng Y. J., Fast Compression Algorithms for Capsule Endoscope Images, 2nd International Congress on Image and Signal Processing, 2009: 212-215.

[23] Liu Z. H., Li J., Li Z. W., Regularization method with two parameters for nonlinear  ill-posed problems, Science in China Series A: Mathematics, vol. 51, 2008: 70-78.

[24] Xu Y. J., Liu Z. H., Li J., Identification of nonlinearity in k-approximate periodic Parabolic equations, Nonlinear Analysis, vol. 71, 2009: 691-696.

[25] Li J., Wang F., Simplified Tikhonov regularization for two kinds of parabolic equations,   Journal of Korean Mathematical Society, vol. 48, 2011: 311-327.

[26] Li J., Liu Z. H., Convergence rate analysis for parameter identification with semi-linear parabolic equation, Journal of inverse and ill-posed problems, vol. 17, 2009: 373-383.