报告承办单位: 数学与统计学院
报告内容: Effect of impulsive controls in a model system for age-structured population over a patchy environment
报告人姓名:邹幸福
报告人所在单位: 加拿大西安大略大学
报告人职称/职务及学术头衔: 教授,博导
报告时间: 2018年10月22日 周一下午4:30
报告地点: 理科楼A419
报告人简介: 邹幸福教授于1983年和1989年在中山大学数学系和湖南大学数学系分别获学士和硕士学位。1996年在加拿大约克大学博士毕业并获理学博士学位之后分别在加拿大维多利亚大学和美国乔治亚理工学院动力系统与非线性研究中心做博士后。1999年1月至2004年1月在加拿大纽芬兰纪念大学先后教授教授(终身教职),自2004年开始在加拿大西安大略大学应用数学系教授(终身教职),2012年入选湖南省百人计划专家并在中南大学担教授, 在泛函微分方程与应用动力系统研究领域取得了一系列有影响的创新成果在J.Dif.Eqns. SIAM J.Appl.Math., SIAM J.Math.Anal.等著名杂志发表有影响的研究论文一百多篇,担任Applicable Analysis, Journal of Computational and Applied Mathematics, Communications on Pure and Applied Analysis等SCI收录杂志的编委, 曾获加拿大国家自然科学和工博土后奖, Petro-Canada青年研究创新奖, 安大略省长杰出研究奖。
报告摘要:In this talk, I will present a very general model of impulsive delay differential equations in $n-patches$ that describe the impulsive control of population of a single species over $n-$patches. The model has an age structure consisting of immatures and matures, and also considers mobility and culling of both matures and immatures. Conditions are obtained for extinction and persistence of the model system under three special scenarios: (i) without impulsive control; (ii) with impulsive culling of the immatures only; and (iii) with impulsive culling of the matures only, respectively. In the case of persistence, the persistence level is also estimated for the systems in the case of identical $n$ patches, by relating the issue to the dynamics of multi-dimensional maps. Two illustrative examples and their numerical simulations are given to show the effectiveness of the results. Based on the theoretical results, some strategies of impulsive culling are provided to eradicate the population of a pest species.